Chapter 6 Quadrilaterals

Section 1 Polygons

GOAL 1: Describing Polygons

A __polygon__ is a plane figure that meets the following conditions.

1) It is formed by three or more segments called sides__, such that no two sides with a common endpoint are collinear.
2) Each side intersects exactly two other sides, one at each endpoint.

Each endpoint of a side is a __vertex__ of the polygon. The plural of vertex is vertices. You can name a polygon by listing its vertices consecutively. For instance, PQRST and QPTSR are two correct names for the polygon to the right.

Example 1: Identifying Polygons

State whether the figure is a polygon. If not, explain why.

A - yes, formed by straight lines
B - yes, formed by straight lines
C - yes, formed by straight lines
D - no, has curves
E - no, has an opening/not a closed figure
F - no, has intersecting lines

Polygons are named by the number of sides they have.

Number of sides	Type of polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon

Number of sides	Type of polygon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon

\qquad convex \qquad if no line that contains a side of the polygon contains a point in the interior of the polygon.

A polygon that is not convex is called \qquad not convex \qquad or
\qquad concave \qquad .

convex polygon

A polygon is \qquad equilateral \qquad if all of its sides are congruent.

A polygon is ___equiangular___ if all of its interior angles are congruent.

A polygon is ___regular___ if it is BOTH equilateral and equiangular.

Example 3: Identifying Regular Polygons

Decide whether the polygon is regular.
a.

b.

c.

A - no, not equiangular
B - yes, both equilateral and equiangular
C - no, not equiangular
**concave figures will NOT be regular

GOAL 2: Interior Angles of Quadrilaterals

A ___ diagonal_of a polygon is a segment that joins two nonconsecutive vertices. Polygon PQRST has 2 diagonals from point Q, QT and QS .

Like triangles, quadrilaterals have both interior and exterior angles. If you draw a diagonal in a quadrilateral, you divide it into two triangles, each of which has interior angles with measures that add up to 180°. So you can conclude that the sum of the measures of the interior angles of a quadrilateral is $2\left(180^{\circ}\right)$, or 360°.

THEOREM

theorem 6.1 Interior Angles of a Quadrilateral The sum of the measures of the interior angles of a quadrilateral is 360°.

$$
m \angle 1+m \angle 2+m \angle 3+m \angle 4=360^{\circ}
$$

Example 4: Interior Angles of a Quadrilateral

Find $m<Q$ and $m<R$.

$$
\begin{aligned}
& x+2 x+70+80=360 \\
& 3 x+150=360 \\
& 3 x=210 \\
& x=70
\end{aligned}
$$

$$
\begin{aligned}
& m<Q \rightarrow x \rightarrow 70^{*} \\
& m<R \rightarrow 2 x \rightarrow 2(70) \rightarrow 140^{*}
\end{aligned}
$$

EXIT SLIP

File 06bbd \#s 12-20, 24-30, 37-45 (skip 40)

